Quantum model for impulsive stimulated Raman scattering
نویسندگان
چکیده
منابع مشابه
Femtosecond multiple - pulse impulsive stimulated Raman scattering spectroscopy
Optical control of elementary molecular motion through impulsive stimulated Raman scattering is enhanced by means of timed sequences of femtosecond pulses that are produced by pulse-shaping techniques. In particular, terahertz-rate trains of femtosecond pulses are used for repetitive impulsive excitation of individual phonon modes in an a-perylene molecular crystal. When the pulse repetition ra...
متن کاملSideward Stimulated Raman Scattering
The SRS of a short laser pulse is important in the contexts of particle acceleration2 and inertial confinement fusion.3,4 In previous studies of the spatiotemporal evolution of SRS,5–13 the Stokes waves were allowed to pass freely through the pulse boundaries. However, the radial ponderomotive force associated with the pulse can expel plasma from the neighborhood of the pulse axis, in which cas...
متن کاملQuantum random bit generation using stimulated Raman scattering.
Random number sequences are a critical resource in a wide variety of information systems, including applications in cryptography, simulation, and data sampling. We introduce a quantum random number generator based on the phase measurement of Stokes light generated by amplification of zero-point vacuum fluctuations using stimulated Raman scattering. This is an example of quantum noise amplificat...
متن کاملMulticolor stimulated Raman scattering microscopy
Stimulated Raman scattering (SRS) microscopy has opened up a wide range of biochemical imaging applications by probing a particular Raman-active molecule vibrational mode in the specimen. However, the original implementation with picosecond pulse excitation can only realize rapid chemical mapping with a single Raman band. Here we present a novel SRS microscopic technique using a grating-based p...
متن کاملoptimization of electron raman scattering in double rectangular quantum wells
in this work, by using the particle swarm optimization the electron raman scattering for square double quantum wells is optimized. for this purpose, by combining the particle swarm algorithm together with the numerical solution procedures for equations, and also the perturbation theory we find the optimal structure that maximizes the electron raman scattering. application of this algorithm to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics B: Atomic, Molecular and Optical Physics
سال: 2019
ISSN: 0953-4075,1361-6455
DOI: 10.1088/1361-6455/ab0bdc